Lecture 24: Hypercontractivity and Applications

- Let $\varepsilon \in (0, 1/2]$
- Consider the following distribution p(r) = ε^{wt(r)}(1 − ε)^{n-wt(r)} (Intuition: Starting with input 0ⁿ, each bit is independently flipped to 1 with probability ε to obtain the string r)
- Given a function f we define a smoothened version of f, namely, \tilde{f} as: $\tilde{f}(x) := \sum_{r \in \{0,1\}^n} p(r) \cdot f(x+r)$

イロト イポト イヨト イヨト 二日

Recall: Properties

• Let
$$\rho = 1 - 2\varepsilon$$

• Let $T_{\rho}(f) = \tilde{f}$

Lemma

$$\widehat{\widetilde{f}}(S) = \rho^{|S|} \widehat{f}(S)$$

Lemma

The operator T_{ρ} is a linear bijection

Lecture 24: Hypercontractivity and Applications

Definition (*p*-Norm)

Given a function f, for p > 0, we define the p-norm as:

$$||f||_{p} := \left(\frac{1}{N}\sum_{x\in\{0,1\}^{n}}|f(x)|^{p}\right)^{1/p}$$

・ロト ・ 日 ・ ・ 正 ・ ・ Lecture 24: Hypercontractivity and Applications

Lemma (Monotonicity)

For a fixed f, the $||f||_p$ is a non-decreasing function of p, for p > 0. The norm does not increase with increasing p if and only if f is a constant.

Lemma

For
$$p > 0$$
, suppose $||f||_p = ||g||_p$ and let $h = \lambda \cdot f + (1 - \lambda) \cdot g$, where $\lambda \in [0, 1]$. Then $||h||_p \leq ||f||_p$.

Lecture 24: Hypercontractivity and Applications

イロト イポト イヨト イヨト

Lemma (Contraction)

For p > 0, we have:

$$\|T_{\rho}(f)\|_{p} \leq \|f\|_{p}$$

Lemma (Monotonicity)

For $\rho \leq \sigma$ and p > 0, we have:

 $\|T_{\rho}(f)\|_{p} \leq \|T_{\sigma}(f)\|_{p}$

Lecture 24: Hypercontractivity and Applications

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Theorem (Hypercontractivity)

For
$$1 \leq p \leq q$$
 and $\rho \leq \sqrt{\frac{p-1}{q-1}}$, we have:
$$\|T_{\rho}(f)\|_{q} \leq \|f\|_{p}$$

- Intuition: $\|T_{\rho}(f)\|_{\rho}$ is definitely $\leq \|f\|_{\rho}$. But this theorem says that even the $\|T_{\rho}(f)\|_{q}$ is $\leq \|f\|_{\rho}$.
- For $\rho = \sqrt{\frac{p-1}{q-1}}$ we get the tightest version of the inequality
- Application: We use p = 2 or q = 2, and then use Parseval's

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Degree)

A function f has degree (at most) k if $\hat{f}(S) = 0$ for all |S| > k.

Lecture 24: Hypercontractivity and Applications

Application: Bounds on Norms of Low-degree Polynomial

Let f be a function with degree k

Lemma

For
$$p \in [1,2]$$
, we have: $\|f\|_p^2 \geqslant (p-1)^k \|f\|_2^2$

Let
$$q = 2$$
 and $\rho = \sqrt{p-1}$ and $p \leq q$
 $\|f\|_p^2 \geq \|T_\rho(f)\|_q^2$ Hypercontractivity
 $= \sum_{S} \widehat{f}(S)^2$ Parseval's
 $= \sum_{S} (p-1)^{|S|} \widehat{f}(S)^2 \geq (p-1)^k \sum_{S} \widehat{f}(S)^2$
 $= (p-1)^k \|f\|_2^2$ Parseval's

||f||_p is definitely smaller than *||f||₂* (because *p* ≤ 2), but it is not too small

Lecture 24: Hypercontractivity and Applications

Application: Bounds on Norms of Low-degree Polynomial

Lemma

For
$$q \geqslant 2$$
, we have: $\|f\|_q^2 \leqslant (q-1)^k \, \|f\|_2^2$

Let
$$p = 2$$
, $\rho = 1/\sqrt{q-1}$ and g be such that $T_{\rho}(g) = f$
 $\|T_{\rho}(g)\|_{q}^{2} \leq \|g\|_{2}^{2}$ Hypercontractivity
 $= \sum_{S} \widehat{g}(S)^{2}$ Parseval's
 $= \sum_{S} \widehat{f}(S)^{2}/\rho^{2|S|} = \sum_{S} (q-1)^{|S|} \widehat{f}(S)^{2}$
 $\leq \sum_{S} (q-1)^{k} \widehat{f}(S)^{2}$ Low Degree
 $\leq (q-1)^{k} \|f\|_{2}^{2}$ Parseval's

||f||_q is definitely larger than *||f||₂* (because g ≥ 2), but it is not too large

Lecture 24: Hypercontractivity and Applications